An $\widetilde{O}(n)$ Queries Adaptive Tester for Unateness
نویسندگان
چکیده
We present an adaptive tester for the unateness property of Boolean functions. Given a function f : {0, 1}n → {0, 1} the tester makes O(n log(n)/ε) adaptive queries to the function. The tester always accepts a unate function, and rejects with probability at least 0.9 if a function is ε-far from being unate.
منابع مشابه
A $\widetilde{O}(n)$ Non-Adaptive Tester for Unateness
Khot and Shinkar (RANDOM, 2016) recently describe an adaptive, O(n log(n)/ε)-query tester for unateness of Boolean functions f : {0, 1}n 7→ {0, 1}. In this note, we describe a simple non-adaptive, O(n log(n/ε)/ε) -query tester for unateness for real-valued functions over the hypercube.
متن کاملAn ~O(n) Queries Adaptive Tester for Unateness
We present an adaptive tester for the unateness property of Boolean functions. Given a function f : {0, 1}n → {0, 1} the tester makes O(n log(n)/ε) adaptive queries to the function. The tester always accepts a unate function, and rejects with probability at least 0.9 if a function is ε-far from being unate.
متن کاملA Õ(n) Non-Adaptive Tester for Unateness
Khot and Shinkar (RANDOM, 2016) recently describe an adaptive, O(n log(n)/ε)-query tester for unateness of Boolean functions f : {0, 1} 7→ {0, 1}. In this note, we describe a simple non-adaptive, O(n log(n/ε)/ε) -query tester for unateness for real-valued functions over the hypercube.
متن کاملTesting Unateness of Real-Valued Functions
We give a unateness tester for functions of the form f : [n] → R, where n, d ∈ N and R ⊆ R with query complexity O( log(max(d,n)) ). Previously known unateness testers work only for Boolean functions over the domain {0, 1}. We show that every unateness tester for realvalued functions over hypergrid has query complexity Ω(min{d, |R|}). Consequently, our tester is nearly optimal for real-valued f...
متن کاملBoolean Unateness Testing with $\widetilde{O}(n^{3/4})$ Adaptive Queries
We give an adaptive algorithm which tests whether an unknown Boolean function f : {0, 1} → {0, 1} is unate, i.e. every variable of f is either non-decreasing or non-increasing, or ε-far from unate with one-sided error using Õ(n/ε) queries. This improves on the best adaptive O(n/ε)-query algorithm from Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova and Seshadhri [BCP17b] when 1/ε n. Combined w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1608.02451 شماره
صفحات -
تاریخ انتشار 2016